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The accuracy of two well-established numerical methods is demonstrated, and the
importance of ‘‘bandwidth’’ examined, for computationally efficient Markov based
extreme-value predictions associated with finite duration stationary sample paths of a
non-linear oscillator driven by Gaussian white noise. By making the Poisson assumption
of independent upcrossings, extreme exceedance probabilities are predicted via the mean
threshold crossing rate, using numerical solutions of the stationary Fokker–Planck (FPK)
equation. With bandwidth initially ignored, predicted exceedances using the Weighted
Residual methods of Bhandari and Sherrer, Soize, and Kunert, and the Finite Element
method of Langley, are compared with nominally ‘‘exact’’ predictions for a heavily damped
Duffing-type model obtained by using an explicit FPK solution—the FE method being
established as superior. Predictions via FE solutions are then compared with very long
Monte Carlo simulations, in which bandwidth effects are included. Two lightly damped
non-linear oscillator models are examined, both with cubic stiffness, but different damping
mechanisms—one model again being of simple Duffing-type with linear damping, the other
being appropriate to single co-ordinate random vibration of a clamped–clamped beam,
with wholly non-linear damping. The realistic damping parameter values assigned to the
beam model are statistically equivalent to the linear damping level chosen for the simple
model, at just above 1%. At this overall damping level, results clearly demonstrate that,
for the probability levels and durations considered, bandwidth is only important for the
linearly damped model—for the beam model with non-linear damping, bandwidth can be
ignored, allowing accurate extreme exceedance predictions by using only the stationary
FPK equation. The paper also demonstrates that the ‘‘limiting decay rate of the
first-passage probability’’—advocated by Crandall, Roberts and others, as a criterion for
deciding the barrier height above which first-passage times can be assumed
independent—proves grossly over-conservative as a corresponding criterion for deciding
the independence level for use in stationary extreme-value prediction.
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1. INTRODUCTION

Reliability assessment of dynamically sensitive structures with stochastic loading can be
assisted by using two wholly complementary statistical approaches: (i) via the ‘‘reliability’’
function or first-passage probability, or (ii) via extreme-value analysis [1]. Much important
work has been done over the past three decades on theoretical first-passage prediction for
use with oscillator models in structural reliability assessment [1, 2–7], but the theoretical
base for extreme-value prediction is much less complete. Extreme-value statistics are
important because they give useful information about the maximum value of key response
variables within a specified period of time, in a form which can also be compared directly
with the risk of other extreme events occurring elsewhere. There is currently a need for
accurate and efficient prediction of low exceedance probabilities, from the tails of the
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extreme-value distribution function associated with realistic oscillator models of random
vibration, by using methods which can be embedded unobtrusively within a more general
structural reliability procedure. The stochastic type loading mentioned here arises, for
example, in mathematical models of offshore structures exposed to ocean waves, buildings
undergoing seismic disturbances, wind buffeting or turbulence problems on aircraft or
bridges, and in rolling contact problems on irregular surfaces. When it is assumed that
particular difficulties in physical modelling and parameter assignment can be overcome,
the two most serious problems which can arise in the use of these models stem either from
strong non-linearity in system behaviour or from sources of excitation which cannot
adequately be modelled as stationary normal processes. The occurrence of either problem
generally prevents confident use of linear dynamic analysis with extreme-value theory for
normal processes [8, 9]. Here the focus of attention is on the first type of problem, namely
prediction of extreme-value statistics for a non-linear oscillator excited by a stationary
normal stochastic process.

The task of obtaining exact extreme-value distribution functions for short duration
sample paths of a general stochastic process, remains an unsolved problem [10]. In one
important approximate approach via asymptotic theory [8], it is assumed, for practical
purposes, that the extreme-value distribution function has converged within a finite time
interval, to one of three specific types (I, II, or III). In using these asymptotic models it
is first necessary to establish the distribution type, and then to estimate unique values of
the distribution scale and location parameters—these are available in closed form only for
normal processes [8]. For non-normal responses, the only practical way to obtain these
parameters for non-linear oscillator models is via simulated data. But even when using
selective estimation methods, which offer significant efficiency gains over conventional
approaches [11], confident prediction of low extreme exceedance probabilities still requires
a large extreme-value sample size. To meet this requirement very long Monte Carlo
simulations are needed, but these often prove unacceptable in practice. There have been
many methods developed to obtain reasonably good approximations to various non-linear
oscillator response statistics [12, 13], although in the specific role of extreme-value
prediction, the accuracy of these methods is largely unknown, except for the standard
method of statistical linearization, which is known to be severely in error for strongly
non-linear behaviour. Some specific extreme-value prediction methods have been
developed by using a combination of theory, simulation and extrapolation [1, 14–17].
Winterstein and Ness [14] for example, developed a general two-stage method via Hermite
moment closure and analytical model fitting (which can also be used with limited
simulations or measured data [16] if complete knowledge of a dynamic model is lacking).
Predictions of (i) Morison-type fluid forces on cylinders; and (ii) responses of Duffing and
hysteretic oscillator models, give accurate (median) extreme-values, fatigue damage
estimates, and crossing rates. For more complex non-linear oscillator models however,
high-order moment closure is required, significantly increasing the complexity of the
method. Naess et al. [15] used extended linearization for strongly non-linear systems via
an alternative to the usual minimum mean square error criterion. Accurate extreme
exceedance probabilities were obtained for simple Duffing models, and for oscillators with
linear stiffness and quadratic damping. Obvious potential exists for use of this method on
MDOF systems, but the error criterion depends critically on the extreme level and the type
of non-linearity. The first author, Dunne [17], used optimal control theory, plus short
simulations, to obtain highly accurate extreme local maxima exceedance probabilities for
oscillators with strongly non-linear stiffness and damping, driven by narrow-band
Gaussian excitation. Corresponding extreme-value statistics can also be obtained, but the
method cannot be used where conventional local maxima theory proves sensitive or fails
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totally (e.g., for an oscillator driven by unlimited bandwidth white noise). Clearly there
is still a need for a direct, accurate, and efficient approach to extreme-value prediction,
for realistically non-linear oscillator models driven by white noise excitation, which
does not involve complicated intermediate stages, system dependent non-linearities, or
simulation.

One direct theoretical route to the extreme value distribution function via threshold
crossing statistics uses only the mean upcrossing rate [18]. This asymptotic approach is
justified when the Poisson assumption of independent up-crossings holds: i.e., for relatively
high thresholds and long durations. To obtain stationary crossing statistics, only the joint
probability density function for the response and its first derivative is needed. But for lower
thresholds or short time durations, the effect of ‘‘bandwidth’’ may demand modification
to the Poisson assumption [1, 8] (‘‘bandwidth’’ is taken to mean the concentration of
energy on response sample paths within a narrow-band of frequencies, an effect which
usually means successive local maxima are highly correlated). The effort needed to make
this modification however, even when practically possible, goes well beyond the
requirements of crossing statistics alone and therefore, in particular applications, strong
evidence is needed to justify it. Conversely, if bandwidth is not important, the threshold
crossing approach is attractively simple.

By contrast, if exact first-passage probabilities are obtained, a similar independence
assumption is not required at non-extreme levels, even though such predictions may prove
computationally very expensive. There are however good physical reasons for assuming
first-passage intervals also become independent above certain finite ‘‘barrier’’ heights [3, 7],
opening up the possibility of very efficient approximate predictions based on the Poisson
assumption. Indeed the so called ‘‘limiting decay rate of the first-passage probability’’ has
been studied by several researchers [2–7], as a criterion for deciding the (first-passage)
barrier height above which the Poisson assumption holds for linear and non-linear
oscillator responses. It is not known in general however, whether this same criterion
extends equally well to stationary extreme-value prediction. Therefore in focusing attention
on the accuracy of efficient extreme-value prediction via threshold crossing statistics, the
suitability of the limiting decay-rate criterion needs to be demonstrated.

Now, for a general class of non-linear oscillator models, the mean threshold crossing
rate can be obtained via Markov process theory by using the stationary
Fokker–Planck–Kolmogorov (FPK) equation [19]. Although many numerical solution
methods have been developed, very little is known about their accuracy in extreme-value
prediction. Moreover stationary FPK solutions contain no information about the structure
of a stochastic process at the sample level, and are therefore insufficient to account for
the effects of bandwidth. This deficiency would seemingly limit the use of the stationary
FPK equation as an approach to extreme response statistics. But those examples cited so
far demonstrating the importance of bandwidth (see, e.g., reference [1]) have been
justifiably restricted to very simple oscillator models with light linear damping. This raises
the question whether the effect of bandwidth is actually significant for extreme-value
prediction associated with a realistic system with non-linear damping.

In this paper, initially (in section 2), a synopsis is given of a very large number of well
established methods which might be used to solve the stationary FPK equation. The
accuracy of two methods in particular (the WRM and the FEM) are then tested specifically
to obtain efficient FPK based extreme-value exceedance probabilities, namely by
comparison with nominally ‘‘exact’’ predictions for a simple Duffing oscillator. Three
different shape functions are tested in the WRM and just one in the FEM. This test is
designed to find an acceptable numerical FPK solution method (rather than to exhaust
the relative merits of each) in order to establish—for two lightly damped non-linear
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oscillators with statistically equivalent damping levels—the importance of bandwidth in
extreme-value prediction, and second, to demonstrate the accuracy of a highly efficient
prediction method based only on the stationary FPK equation.

2. A SYNOPSIS OF NUMERICAL METHODS FOR SOLVING THE FPK AND BK
EQUATIONS

Since a large number of numerical FPK solution methods have been developed over
the past 30 years, it is appropriate before making use of two of them to explain
briefly the main uses of both FPK and BK equations in structural dynamics, and to
give a brief qualitative overview of specific methods. Also particular articles will
be identified which give good reviews to these specific methods, so this synopsis will
justify the choice of the methods tested in section 4 and subsequently used in
section 5.

The (forward) Fokker–Planck (FPK) equation and its closely related adjoint: the
Backward Kolmogorov (BK) equation, are parabolic time-dependent partial differential
equations used to describe transition probabilities associated with continuous state
Markov processes in N dimensions (equation (10) of this paper is an FPK equation). Full
descriptions of these equations as applied in structural dynamics can be found in references
[13, 19, 20] where they are mainly used in obtaining response moments, density functions,
crossing- or first-passage statistics. First-passage probabilities for example, which have
played such a prominent role in failure studies, can be approached via the ‘‘reliability’’
function—either by solving a BK-type, or Forward FPK equation—whereas first-passage
moments can be obtained directly from the simpler Pontryagin–Vitt equation [13]. Initial
conditions can be modelled as deterministic or as ‘‘random start’’ with specified
distribution. Various types of (partially open) boundary condition can be used to model
different types of first-passage failure. For example, a ‘‘B’’-type barrier imposes a
single-sided absorbing boundary, a ‘‘D’’-type models a double barrier, and more
complicated contour barriers are also possible such as the (circular) ‘‘C’’-type. The use of
different barriers can have a significant influence on the probability of first-passage failure
[3–5]. When the FPK boundaries are closed, or the barrier level is allowed to move to
infinity, stationary solutions are possible if the normalization condition (which imposes no
loss of probability) is satisfied for all time. Stationary solutions can be used, for example,
to obtain various low-level response statistics and higher-order information such as the
mean crossing rate. And from a computational viewpoint stationary solutions can either
be obtained with an eigenfunction expansion of a non-stationary FPK equation (using the
eigenvector associated with a zero eigenvalue [7]), or directly from a stationary FPK (by
imposing time independence [19]). In the first-passage problem the normalization condition
is only satisfied initially, so the FPK/BK solution is never stationary. However, under
appropriate conditions a limit state is reached known as ‘‘the limiting decay rate of the
first-passage probability’’ [2–7]. This decay rate is equal to the smallest eigenvalue in an
eigenfunction expansion of a non-stationary FPK or BK equation with appropriate
boundary conditions—(reference [6] details many different numerical methods which have
been designed to obtain approximate first-passage statistics via the limiting decay rate, by
using the ‘‘decay-rate over mean-crossing-rate’’ ratio as a criterion to justify the approach).
As shall be seen shortly, the FPK equation has not been used to any extent in
extreme-value analysis.

In discussing particular numerical approaches one distinguishes here between two types
of approximation: (i) those methods which are intended to give specific insight and
reasonably good approximations to FPK or BK equations (or a suitably reduced version),
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and (ii) ‘‘numerical’’ methods, which, if fully utilized, should in practice be able to
approach the exact solution with virtually negligible error (these methods are shown in
Table 1). Type (i) methods will not be discussed here (which include for example Van
Kampen expansions, stochastic averaging, moment methods and others, which, along with
known explicit solutions, are covered in references [13, 20]), even though an examination
of the literature over the past 30 years, shows that the number of publications using type
(i) methods considerably outstrips the number using any one of our (five) specific
‘‘numerical’’ categories.

Table 1 gives a sample of users of type (ii) numerical methods. This list is not definitive
since there are many non-structural applications omitted, for example in physics and
biology (particularly astro-, plasma-, particle- and chemical physics). Within the five
categories listed, contributors have variously obtained stationary or non-stationary
solutions of 1D, 2D or 3D problems.

T 1

Some contributors to the development and use of numerical methods for solving the forward
FPK and backward Kolmogorov equations

Method Contributors

Weighted residuals R. G. Bhandari and R. E. Sherrer (1968) [21]
C. Soize (1989) [22]
A. Kunert (1991) [23]

Finite element L. A. Bergman and J. C. Heinrich (1981) [24]
L. A. Bergman and B. F. Spencer Jr (1983) (see ref. list [26])
R. S. Langley (1985) [25]
L. A. Bergman (1989) (see ref. list [26])
H. P. Langtangen (1991) (see ref. list [26])
B. F. Spencer Jr and L. A. Bergman (1993) [26]
H. T. Banks, H. T. Tran and D. E. Woodward (1993) [27]
H. U. Köylüoglu, S. R. K. Nielsen and R. Iwankiewicz (1994) [28]
M. A. Elgebeily and H. E. E. Shabaik (1994) [29]

Path integration M. F. Wehner and W. G. Wolfer (1983) (see ref. list [32])
(cell mapping) T. Kapitaniak (1985) [30]

J.-Q. Sun and C. S. Hsu (1988) [31]
J.-Q. Sun and C. S. Hsu (1990) (see ref. list [32])
A. Naess and J. M. Johnsen (1991) [32]
A. Naess and J. M. Johnsen (1991) (see ref. list [32])
A. N. Drozdov (1992) [33]
H. U. Köylüoglu, S. R. K. Nielsen and R. Iwankiewicz (1995)

(see ref. list [34])
H. U. Köylüoglu, S. R. K. Nielsen and A. C. Cakmak (1995) [34]
R. Iwankiewicz and S. R. K. Nielsen (1996) [35]

Finite difference J. B. Roberts (1986) [5]
J. S. McKenzie, M. R. O’Brian and M. Cox (1991) [36]
E. M. Epperlein (1994) [37]
B. T. Park and V. Petrosian (1996) [38]
W. V. Wedig (1996) [39]

Variational method T. K. Caughey (1971) (see ref. list [7])
—Eigenfunction J. D. Atkinson (1973) (see ref. list [7])
expansion J. P. Johnson and R. A. Scott (1980) (see ref. list [7])

M. Yar and J. K. Hammond (1986) (see ref. list [7])
R. S. Langley (1988) [7]
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The earliest approach shown is the weighted residual method (WRM) [21–23] which is
typically used to solve a stationary or non-stationary FPK equation via weighted
orthogonal functions and Galerkin’s method. (Reference [22] gives perhaps the most
detailed application of this method.)

Closely related to the WRM is the Finite Element method (FEM) which uses simple
piece-wise orthogonal shape functions defined over finite, rather than an infinite region,
thus allowing greater flexibility in satisfying complicated boundary conditions. Application
of the FEM has been fully described in a series of more than 16 publications, starting
around 1981 with that of Bergman and Heinrich, [24] (addressing numerical first-passage
prediction by using a Petrov–Galerkin solution of the BK equation), through to the more
recent use of the (simpler) Bubnov–Galerkin solution of the FPK by Spencer and Bergman
[26]. Reference [26] actually gives a thorough review of FEM developments up to 1993.
Langley [25] independently developed an efficient stationary FEM in which finite elements
were also used to approximate drift terms in the FPK equation. It should be mentioned
that some specific problems known to occur with the FEM (and finite differences) include
for example when the drift terms dominate diffusion. Banks et al. [27], combined the FEM
with the method of characteristics to avoid erroneous oscillatory behaviour and negative
probabilities which can occur with both conventional FEM (and finite difference methods).
But under more general conditions the main limitation with the FEM is in its applications
to higher dimensions where storage problems can pose severe restrictions.

The Path Integral or Cell Mapping method represents a reversion from the fully
continuous Markov model described by the FPK equation, back to a Markov model with
discrete time or states or both. Table 1 shows that the level of activity using this method
is high and the efficiency of 2D solutions compares with FEM predictions for both
low-level responses and first-passage statistics. For 3D and higher dimensions however, the
method is known to be computationally very expensive [32]. Good reviews of the Path
Integral method can be found in references [32] or [34].

Finite difference methods were amongst the earliest used to solve partial differential
equations, but they have not been widely applied to the FPK until recently owing to
possible problems of numerical instability when attempting to achieve high efficiency.
Roberts [5] was one of the early users of an implicit finite difference scheme to obtain
first-passage statistics via a 1D FPK equation for an oscillator energy envelope process.
More recently, the work of Park and Petrosian [38] deserves mention, since they have
examined six finite difference schemes for use with general forms of FPK equation—three
fully implicit and three semi-implicit. In the application to the problem of stochastic
acceleration in particle physics, they tested a range of performance measures including:
numerical stability, accuracy, efficiency, and robustness—concluding that the fully implicit
Chang–Cooper algorithm is the most robust–all other methods tested in this application
suffered from inaccuracy or instability.

The Variational method—eigenfunction expansion replaces the problem of finding the
solution of the FPK by an equivalent problem of finding the stationary conditions of a
functional. This allows approximate solutions to be obtained via a Rayleigh–Ritz
procedure, which according to reference [7] (where a good review can be found) offers a
potentially more efficient approach than the FEM, provided that the convergence rate is
adequate. The method described in reference [7] uses an eigenfunction expansion of the
FPK, in which complex boundary conditions can be incorporated into the functional,
allowing use of orthogonal functions in the expansion, which need not satisfy the possibly
complex boundary conditions. Testing of the method to predict both the limiting decay
rate of the first-passage probability and the mean time to failure, confirmed the accuracy
of approximate results given in reference [4] for the linear oscillator. There is however little
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known about the convergence of this method for an oscillator with light, but (wholly)
non-linear damping, at relatively high normalised barrier heights (i.e. q3).

Very few of the published numerical predictions, obtained by using the methods
listed in Table 1, correspond to very small failure probabilities. Indeed none of the methods
have been specifically concerned with extreme-value prediction at all, perhaps with the
exception of reference [34] where Path Integral predictions for a Duffing oscillator
driven by white noise excitation, are focused in the tails of the response amplitude
density function. Consequently since little is known about extreme-value prediction,
a position has been reached where this survey can be used to justify an appropriate
route to efficient reliability assessment for non-linear oscillators. This survey can also be
used to identify corresponding numerical FPK methods whose accuracy and efficiency
remains to be tested at extreme levels. Essentially, these two points can be combined
into the single question which asks whether it makes sense to opt for first-passage
failure prediction if it can be shown that very accurate extreme-value probabilities can be
obtained via the mean crossing rate using numerical solutions of the stationary FPK
equation.

Now, since first-passage statistics can be predicted exactly, for example by using the
FEM, it would seem in principle that they offer the most appropriate reliability approach.
But while numerical first passage predictions satisfy the requirement for accuracy, there
are three reasons why they are very inefficient, proving impractical when probabilities are
very small and mean times to failure are long (which is the case of greatest interest in
practice [5]). These reasons are as follows.

(1) Solution of a nonstationary BK or FPK equation is always necessary—this involves
discretization of the time, as well as the space variables, by using for example the
FEM/Crank–Nicholson method [26].

(2) The nonstationary FPK/BK solution must be re-obtained in full for each (discrete)
barrier height.

(3) A very fine mesh is needed to obtain small probabilities if numerical instabilities are
to be avoided (as cited in reference [34], for example, in the use of the Petrov–Galerkin
FEM).

With points (1) and (2) taken together, if the first-passage failure is needed at a number
of discrete barriers (say ten), for a mean failure time of perhaps a thousand response cycles,
it is clear that this will require many orders of magnitude more computing time than that
needed to obtain a single stationary FPK solution.

Furthermore, in practical situations the initial state is usually unknown and so the need
to specify its distribution is an unnecessary complication for long mean failure times since
it has very little influence. By contrast, solving only a stationary equation has the
advantage that the initial state is not specified at all.

Alternatively approximate first-passage failure could in principle be obtained via the
limiting decay given by using an eigenfunction expansion [7] if the (decay rate/crossing
rate) criterion justifies it. There are however two possible difficulties here for oscillators
with very light non-linear damping. First convergence of the expansion at each of the
(discrete) barrier heights may be very slow [7]. And second, since the basis of the limiting
decay rate criterion for finite barrier heights has never been rigorously justified [7], it could
happen that this criterion may be overconservative (as shall be demonstrated in the context
of stationary extreme-value prediction in section 5). Furthermore, to obtain the crossing
rate accurately, solution of a stationary FPK is required (once only), but if an alternative
approach (namely approximate extreme-value prediction) required only this information,
it would seem unnecessarily complicated not to use it.
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To turn then to a threshold crossing based extreme-value approach, the need will arise
in section 5 for an efficient solution of the stationary FPK equation. Since none of the
FPK methods in Table 1 have been tested in the role of extreme level prediction, it seems
highly appropriate to test the WRM [21–23], and the FEM method [25], since these have
been developed primarily for generation of stationary solutions.

3. OSCILLATOR RESPONSE EXTREME-VALUE PREDICTION VIA THE STATIONARY
FPK EQUATION

The assumption of an independent up-crossing process allows a stationary response
amplitude extreme-value distribution function to be derived in asymptotic form by using
only the mean threshold crossing rate. This can be obtained from the joint probability
density function of response and its first derivative via a stationary Fokker–Planck
equation. Construction of the FPK equation requires only drift and diffusion coefficients,
which are obtained directly from the stochastic vibration model when put appropriately
into Ito form [13, 19]. A single-degree-of-freedom model is used here, which allows, by
appropriate choice of parameters, reduction to two different models needed in the study.
This general model is of the form

Z� +2jvn Z� + a1 Z� Z2 + a2 Z� =Z� =+v2
n Z+ k3 Z3 =Aw(t), (1)

which represents an oscillator model with a linear plus two-term non-linear damping, and
linear plus cubic stiffness. The excitation w(t) is a unit intensity stationary zero mean
Gaussian white noise process, scaled to any required level by parameter A. By setting only
the non-linear damping parameters a1 and a2 to zero, the first model obtained is a relatively
simple Duffing-type oscillator with linear damping. The second model obtained from
equation (1), by setting only the linear damping parameter j=0, is an oscillator with
wholly non-linear damping: i.e., without any linear damping component. This second
oscillator is a much more realistic vibration model and is known to describe adequately
large amplitude vibration of a clamped–clamped beam, at least up to the tails of the
response amplitude marginal probability density function [40].

An explicit stationary FPK solution is available for the simple Duffing model, but there
are no exact solutions for the second model. The approximate route chosen here to obtain
the extreme-value exceedance probability appropriate for the general model described by
equation (1), will now be briefly outlined, first in terms of extreme-value distributions, then
in terms of crossing statistics and the Poisson assumption, and finally showing the use of
Markov process theory via the Fokker–Planck equation for a SDOF model.

3.1. -  

In general, the extreme-value M(T) for a stochastic process (or more specifically an
oscillator response Z(t)) is defined as the maximum value of the process within the time
interval (0, T] which can be expressed in mathematical terms [8] as

M(T)= sup {Z(t) : 0E tET}, (2)

where, for any sample path, the supremum is in fact the global maximum value in the
interval (0, T]. The main focus of attention here is on the prediction of the distribution
function defined as usual in the form

P{M(T)E uT}=FM (uT ), (3)
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where uT is the threshold level of variable Z(t), or more specifically the extreme exceedance
probability, which can be written in terms of the distribution function as

P{M(T)q uT}=1−FM (uT ). (4)

Now for practical durations appropriate to extreme levels uT of design interest, FM (uT )
will be very close to one, and therefore accuracy in the tails of the distribution function
(3) is very important. Since in many applications the distribution function has typically
been very difficult to obtain, considerable use has been made of the distribution moments
such as expected extreme-value. For example, in marine applications, the notional ‘‘return
period’’ has been widely used to define the time interval T for which the expected
extreme-value is precisely equal to a specified extreme level uT . While the expected
extreme-value is a statistical measure of obvious qualitative value, it is actually not
quantitatively useful, as correctly pointed out in reference [41]. This limitation stems from
the realisation that the probability of exceeding the expected extreme-value is in fact always
relatively high, and cannot therefore be used for meaningful reliability decision making.
In this respect the extreme exceedance probability is by contrast a much more useful
measure, since a small number is easier to interprete in terms of frequencies of occurrence.
Moreover, bandwidth effects have significantly less impact on extreme exceedance
probabilities than on expected extreme-values, giving added justification to a decision
making approach based on probabilities rather than expected values. These two aspects
give further motivation to the objectives of this paper.

3.2.       -

For sufficiently high levels uT , it is shown in reference [8] that the up-crossing intervals
tend to become asymptotically independent, which allows the cumulative distribution
function (3) to be obtained, since the number of upcrossings per unit time has a Poisson
distribution. In accordance with reference [18], this can be written as

FM (uT )= exp{−y+(uT )T} as uT:a, (5)

where y+(uT ) is the mean threshold crossing rate of level uT . For stationary vibration
responses Z(t), with appropriate sample path properties [8], the mean up-crossing rate can
be obtained from Rice’s formula [19]

y+(uT )=g
ż=+a

ż=0

żf(uT , ż) dż, (6)

where f(z, ż) is the stationary joint probability density function for Z and Z� . This implies
that above certain thresholds, for which the Poisson assumption holds, the extreme
exceedance probability expressed by equation (4) can be obtained over a finite interval just
in terms of the joint properties of response variables Z and Z� .

Naess [1] however suggested that the desired asymptotic convergence is often exceedingly
slow, even implying that the asymptotically Poisson character of the up-crossing process
may in fact be of rather limited value, especially for narrow-band processes of engineering
interest. A correction to the up-crossing rate to account for the effects of bandwidth was
therefore proposed by using the concept of ‘‘mean joint crossing rate’’. This involves a
zero-memory transformation of an n(0, 1) (standard normal) process to one with the same
spectrum and high level crossing rate as Z(t). In the applications in [1], use of this
correction does show some noticeable improvement in the accuracy of predictions for a
white noise driven linear oscillator with 1% critical damping, but is shown to be less
important when damping levels are increased to 4% critical. In another application,
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involving non-Gaussian excitation of a linear oscillator, predictions of the expected-ex-
treme, in which bandwidth effects are accounted for, showed error reductions of around
25% for an average of 36 cycles duration, and 10% for 360 cycles—the errors remaining
conservative whether bandwidth correction was included or not. These findings correctly
apply to predictions of expected extreme-values rather than exceedance probabilities,
which, (as pointed-out in reference [41] and mentioned earlier) does not actually offer a
very useful reliability measure. The question whether bandwidth is important for
exceedance probabilities will therefore be taken up in section 5.

3.3.        

Markov process theory allows the statistical properties of the response trajectories for
a class of non-linear oscillator models to be described in terms of the FPK equation
[13, 19]. The stationary joint density function needed in equation (6) for use in equations
(5) and (4) can therefore be obtained for a stochastic dynamic model of the type given
by equation (1) via a 2D FPK equation. It should however again be mentioned at this
stage that for non-linear oscillator models in general, correction for the effects of
bandwidth cannot be based on the FPK equation alone and therefore one proceeds
accepting this limitation only to justify it in section 5. Construction of the FPK associated
with equation (1) (and indeed for more general non-autonomous models, with more
degrees of freedom) is approached via an appropriate Ito equation [19] of the form

dz� =Q �(z� , t) dt+G(z� , t) db� (t) (7)

where in general z� (t) represents an n-dimensional vector Markov solution process, Q� (z� , t)
is an n-dimensional vector of system functions, and G(z� , t) db� (t) is an n-dimensional
filtered version of the independent increments of an m-dimensional Wiener process b� (t)
with the properties that

E[b� (t)]=0 (8)

and the increments of the Wiener process satisfy

E(Dbi (t)Dbj (t))=2Dij Dt. (9)

Here, the formal derivative of b� (t) is a unit intensity white noise process w(t), and the
matrix D= pI (where I is the unit matrix). Equation (1) can be put into the form of
equation (7), by using an appropriate state variable description. The general form of the
FPK equation for a non-autonomous differential model can be obtained by identifying the
drift and diffusion terms [19] to give

1

1t
f(z� , t =z0, t0)= s

n

i=1

s
n

j=1

12

1zi 1zj
[(GDGT)ij f ]− s

n

i=1

1

1zi
(Qi (z� , t) f), (10)

where f is the joint transition probability density function f(z� , t =z0, t) which is a unique
solution of equation (10), subject to a large variety of boundary conditions [13]
(appropriately specified shortly for the stationary autonomous case).

When the coefficients in the differential model do not explicitly depend on time, and
if the excitation process is independent of the system state, then the Ito equation (7)
simplifies to

dz� = g(z� ) dt+G db� (t), (11)

where g(z� ) is a vector of system functions and G is a constant square matrix.
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By allowing the initial state to tend infinitely far back into the past, i.e., t0:−a, then
if far field and normalization boundary conditions can be imposed over an unrestricted
region V in the form

f(z� ):0, =z� =:2a, and gV

f(z� ) dz� =1, (12, 13)

then the stationary FPK equation follows,

1
2 s

n

i=1

s
n

j=1

Bij
12

1zi 1zj
[ f(z� )]− s

n

i=1

1

1zi
[gi (z� ) f(z� )]=0 (14)

where B=2pGGT is an n× n matrix of (white noise) intensities, and f(z� ) is the stationary
joint probability density function associated with the stationary trajectories of vector
process z� (t).

Specializing this approach to the oscillator model equation (1) gives a two-state vector
Markov version of equation (11) described by the Ito equation

$dz1

dz2%=$ z2

−2jvn z2 − a1 z2 z2
1 − a2 z2 =z2 =−v2

n z1 − k3 z3
1% dt+$0 0

0 A%$ 0
db(t)%, (15)

and the corresponding stationary FPK equation (14) can then be written as

pA2 12f
1z2

2
−

1

1z1
(z2 f(z� ))+ 1

1z2
((2jvn z2 + a1 z2 z2

1 + a2 z2 =z2 =+v2
n z1 + k3 z3

1 ) f(z� ))=0, (16)

with the same boundary conditions (12) and (13) as appropriate to a two-state process.
Now if equation (16) can be solved accurately, then use of equations (5) and (6), via

the Poisson assumption, allows approximation of the extreme-value exceedance
probability via equation (4). The key initial question then for prediction of extreme
response statistics appropriate to sample solutions of equation (1), is whether highly
efficient solutions of the FPK equation can be obtained to sufficient accuracy in the tails
of f(z� ), and under what conditions does the Poisson assumption hold. The answer to the
first of these questions will now be obtained by using functional-type numerical solutions
of the FPK equation.

4. NOMINAL EXTREME EXCEEDANCE PREDICTION BY USING FUNCTIONAL-TYPE
NUMERICAL FPK SOLUTIONS

Two of the well-established numerical methods mentioned in section 2 for obtaining
stationary solutions of the FPK equation (16) with boundary conditions (12) and (13), are
now used to make extreme-value predictions via equations (4)–(6). First, via standard-type
weighted residual methods [21–23], by using three suitably chosen types of shape function,
and second, a Finite Element method developed by Langley [25], which offers a different
form of weighted residual method in the sense that shape functions are defined over finite
regions rather than over the entire variate space. Undetermined coefficients, used in both
methods, are obtained via a Galerkin-type approach.

The main aim of this section is to establish the accuracy of these methods when used
very efficiently in terms of nominal extreme-value predictions for different time intervals
of duration T (or corresponding average number of oscillator cycles). For the special case
a1 = a2 =0 in equation (1), an exact solution of the FPK (given in section 4.4) can be used
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via equations (5) and (6) to generate nominally ‘‘exact’’ benchmark extreme-value
predictions, but, since in these the Poisson assumption of the independent up-crossings is
implicit, they cannot be regarded as definitively accurate in any absolute sense. An absolute
comparison by using Monte Carlo simulations is deferred to section 5. But first, brief
overviews of the weighted residual and finite element methods are given.

4.1.        

The use of the weighted residual method as applied in references [21–23] can be
conveniently described for an n-dimensional FPK and then made specific to the 2D case
appropriate to equation (16). It would appear in general that the main advantage of using
weighted residuals is their very high efficiency for weakly non-linear systems, especially
when using, for example, the WRM developed by Soize [22]. The hope for strongly
non-linear oscillator models is that this efficiency is retained. Of particular interest here
is the accuracy in the tails of the FPK solution when using different types of base function
since this obviously affects the accuracy of extreme-response predictions.

Essentially one assumes in the method that the joint probability density function (jpdf)
f(z� ) satisfying equation (14) can be approximated in series form,

f(z� )1 f
 (z� )= fs (z� )+ s
N

i=1

ci fi (z� ), (17)

where the function fs (z� ) is chosen to satisfy boundary conditions (12) and (13). Shape
functions fi (z� ) are chosen to form a complete basis [20] where coefficients ci are selected
to provide an approximate FPK solution. The usual approach, as adopted here, involves
constructing an equation residual for an arbitrary value N in the series approximation,
namely

R( f
 (z� ))= 1
2 s

N

i=1

s
N

j=1

Bij
12

1zi 1zj
f
 (z� )− s

N

i=1

1

1zi
[gi (z� ) f
 (z� )], (18)

where the residual R( f(z� )) gives a measure of how well the trial solution satisfies the FPK
equation over the entire domain. If the base functions are chosen correctly, and the
coefficients ci are appropriately adjusted, the residual should rapidly converge to zero
everywhere in the region as the number of terms in the series (17) is increased. The weighted
residual equation

gV

R( f
 (z� )) fi (z� ) dz� =0, (19)

plus the normalization condition (13), are used as a basis for obtaining the coefficients ci ,
where the weight functions in equation (19) are usually chosen to be the same as the shape
functions (Galerkin’s method). Equation (19), when combined with the normalization
boundary condition, reduces to a system of (generally sparse) linear equations in the
unknown coefficients from which a unique set of ci can be obtained for any particular value
of N in equation (17). Previous applications of the WRM to the 2D FPK equation have
exploited a double series version of equation (17) in the form

f(z1, z2)= s
N1

i=1

s
N2

j=1

cij pi (z1)pj (z2), (20)
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which automatically satisfies boundary conditions (12) and (13). And again, on forming
the residual in equation (18), unique values of the undetermined coefficients are obtained
via equations (13) and (19).

Here one uses two basic types of double-series approximation, first a Gram–Charlier
series applied by Bhandari and Sherrer [21], which was also used by Soize [22] in optimum
form; and second, a type of pseudo-orthogonal normal density function used by Kunert
[23]. This makes a total of three different choices of base function.

The Gram Charlier series functions Pr(z) are defined as

pi (z1)=
1

z2ps1

exp0−z2
1

2s2
1 1Hi 0z1

s11, pj (z2)=
1

z2ps2

exp0−z2
2

2s2
2 1Hj 0z2

s21, (21)

where Hi (·) and Hj (·) are Hermite polynomials of degree i and j respectively. The
orthogonality property of Hj (·) makes this series very attractive because the integration
in the weighted residual equation (19) can be evaluated efficiently in the form

g g R(z1, z2)Hi 0z1

s11Hj 0z2

s21 dz1 dz2 =0, (22)

where equation (22) generates a system of linear equations for the unknown coefficients.
The efficiency of the series is known to be quite sensitive [22] to the (standard deviation)
parameters s1 and s2 in equation (21). Bhandari and Sherrer [21], for example, used the
standard deviations for the linear system (obtained by setting a1 = a2 = k3 =0 in equation
(1)); by contrast Soize [22] used optimum standard deviations for the linearized system.

The other type of base function tested here [23], is identical to a Gaussian density and
used in the form

pi (z1)=
1

z2ps1

exp6−(z1 −m1i)
2

2s2
1 7, pj (z2)=

1
z2ps2

exp6−(z2 −m2j)
2

2s2
2 7, (23)

where the parameters m1i and m2j are chosen conveniently to span the entire domain of each
variable z1 and z2, and where the parameters s1 and s2 are chosen appropriately small
values such that these behave as pseudo-orthogonal base functions leading to sparse
coefficient matrices. Use of this method requires truncation of the state space typically up
to five equivalent linear standard deviations for both displacement and velocity variables.

Application of Galerkin’s method generates a weighted residual,

g g R(z1, z2) exp6−(z1 −m1i )
2s2

1 7 exp6−(z2 −m2j )
2s2

2 7 dz1 dz2 =0, (24)

and using the normalization condition, results in a particularly simple equation satisfied
by the coefficients cij ,

g g f(z1, z2) dz1 dz2 = s
N1

i=1

s
N2

j=1

cij =1, (25)

allowing cij to be obtained uniquely from equations (24) and (25). (Note that in the original
form [23] stationary solutions were obtained by solving an algebraic eigen problem through
discretizing the transient FPK and using inverse iteration to extract the eigenvector
associated with the (near) zero eigenvalue. Here one uses the direct method via equation
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(24) and the normalization condition, which, for the stationary solution, is mathematically
identical).

Extreme exceedance predictions using these three WRM approaches will shortly be
compared with both Finite Element and nominally exact FPK based predictions.

4.2.         

By approximating the solution to the FPK equation (16) with appropriate shape
functions defined over a number of finite regions within the variate space, weighted
residuals can be formed which offer a particularly efficient means of obtaining the required
solution. Langley [25] developed an FEM specifically for efficient stationary solutions using
piece-wise (Lagrange-type) linear shape functions, where the unknown values of the jpdf
at a number of nodal points are determined via the ‘‘weak’’ form of weighted residual
equation. The same shape functions are also used appropriately for approximating the
non-linear functions gi (z� ) within each element. The ‘‘weak’’ form is needed because 1D
linear shape functions have only C0 continuity, whereas the FPK equation (16) includes
a second derivative and therefore shape functions need at least C1 continuity. This
limitation was overcome [25] by integrating the residual equation (18), to obtain

1
2 s

n

i=1

s
n

j=1

Bij gR

1

1zi
[w(z� )] 1

1zj
[p(z� )]− s

n

i=1 gR

gi (z� )p(z� ) 1

1zi
[w(z� )] dz� =0, (26)

where gi (z) are drift functions, Bij are the elements in the diffusion matrix in equation (14),
and w(z� ) is the weight function. The unknown jpdf p(z� ) is approximated within rectangular
finite elements by

pe (z1, z2)= s
4

i=1

pi Ni (z1, z2), (27)

where pi is the value of the jpdf at the four nodal corners of each element. The
Lagrange-type shape functions Ni (z1, z2) are chosen to give unity at corresponding nodes
and zero elsewhere. Use of equation (27) in equation (16) allows the integrations in
equation (26) to be replaced by a finite sum of integrations over each element. This
computationally efficient scheme leads to a system of linear equations for the unknown
values of pi , which can be solved uniquely when the normalization condition is imposed.
In implementation in practice one initially assumes a finite region, extending perhaps to
four or five standard deviations of the state variables—these are initially estimated by
applying statistical linearization to equation (1), and the computational efficiency is further
improved by using symmetry.

4.3.  

Since all four methods described previously can be implemented such that the unknown
jpdf reduces to the solution of a sparse system of linear equations, there appears in
principle, great scope for obtaining accurate and efficient solutions of 2D FPK equations
by using an appropriately large equivalent discrete form. The major practical questions
which arise in attempting to exploit sparsity are to do with the space needed to store the
coefficient matrix, the achievable machine precision, computer coding considerations, and
the computer time needed to generate and solve the resulting sparse system of equations.

In considering use of sparse solution methods there are in fact several possibilities which
can initially be explored: first one can attempt to find an accurate FPK solution method
(with the smallest number of unknowns) using full storage solution methods—then, if



-   711

successful, one can switch to a very efficient (direct) sparse inversion method. A second
possibility is to attempt from the outset to use (direct) sparse methods up to their respective
storage limitation. And a third possibility is to consider from the outset use of (indirect)
iterative methods, perhaps without attempting to store the entire coefficient matrix
corresponding to a much larger system of equations than would be possible with direct
sparse methods. The attraction of the first option is that an alternative check on the
accuracy of the linear equation solution can be made, but the disadvantage is that the
solution may be relatively slow but moreover there may be no accurate FPK solution
within the full storage space available. The second option goes beyond this full storage
limitation but offers no independent check on accuracy, whereas the third option goes
further still, but would obviously be slower since repeated generation of part of the
coefficient matrix is required and (in general) more time would be needed to solve the
system of equations.

Storage requirements of (direct) methods are governed both by the number of non-zero
elements and the structure of the coefficient matrix. Although dramatic savings in space
are possible, this is not always the case. In fact, in the FEM solution of the FPK equation,
the structure of the coefficient matrix is determined by the choice of global node numbering
scheme, which, for practical considerations, should ideally be systematic. But a systematic
node numbering scheme may lead to a badly structured coefficient matrix with the result
that space savings may not be dramatic. This is in contrast to structural FEM where spatial
dependence is also not standard so very large problems can often be solved without having
to store the assembled coefficient matrix.

For the WRM there is a limitation on the full exploitation of sparsity if high accuracy
is required. This follows from at least one precision problem which can arise in the
generation of the jpdf when using a series involving a large number of terms, say q40.
For example, when using Hermite polynomials in the series expansion (20), the argument
of the largest term in each polynomial is raised to the same power as the degree of the
polynomial itself. Since in extreme-value predictions these (normalized) arguments are
numerically �1, an early machine precision limit is expected for high degree polynomials.
By contrast the FEM, with rectangular elements, involves at most a weighted sum of just
four terms and is therefore not prone to precision errors in the same way. But there is also
a practical limitation on the exploitation of sparse storage in the FEM [25] which
stems from a computer coding difficulty. This arises in construction of the coefficient
matrices, where full storage four-dimensional arrays are needed. Attempts to use
four-dimensional arrays in sparse form prove extremely difficult to work with owing to
the occasional need for indirect addressing. Although this places a practical storage
limitation on the size of the discrete system that can be used, once the coefficient matrix
has been constructed, efficient solution can be obtained by fully exploiting a sparse
inversion method.

For these reasons—and as reported shortly, owing to the additional computer time
needed to generate the coefficient matrices in the WRM compared to the FEM—all the
methods tested in this section initially make use of full-storage methods in nominal WRM
and FEM based extreme-value predictions and then, where appropriate, use will be made
of sparse methods to improve on efficiency.

4.4.      -    

  

A simple Duffing-type oscillator model is obtained when a1 = a2 =0 in equation (1),
and for this special case the well-known exact stationary FPK solution [13, 19] of



. .   . 712

equation (15) is

p(z1, z2)=C exp6−2jvn

pA2 $z2
2

2
+

v2
n z2

1

2
+

k3 z4
1

4 %7, (28)

where the constant C satisfies the normalization condition. With this solution used in
equation (6), the mean up-crossing rate of level uT , becomes

y+(uT )=

1
2X A2

4pjvn
exp$−2jvn

pA2 g
uT

0

(v2
n z+ k3 z3) dz%

g
a

−a

exp$−8jvn

A2 g
x1

0

(v2
n z+ k3 z3) dz% dx1

, (29)

and when used in equation (5) gives a benchmark prediction against which both the WRM
of section (4.1), and the FEM of section (4.2) can be tested. The Poisson assumption is
assumed to hold in all cases; therefore extreme exceedance predictions based on equation
(29) are exact in a nominal sense only. The parameter values used in the simple Duffing
model are chosen to give extreme-value exceedance probabilities of practical interest in the
duration range 25–2500 cycles, corresponding to strongly non-linear responses above three
standard deviations of the displacement variable (the linear parameters in the fully linear
case conveniently give unit displacement and velocity variances). Table 2 gives the control
parameter values used in the comparison and the corresponding standard deviations
predicted using the methods.

Although the numerical WRM methods are now used up to a nominal limitation, the
exact solution of course has no limitation. For all three WRM applications [21–23] a total
of 31 terms was used leading to 961 unknown coefficients, whereas for the FEM, 31 nodal
points were used for each state variable giving a total of 961 nodes over one quarter of
the doubly symmetrical domain, truncated at 5seq for displacement and velocity variables,
representing a region 0E z1 E 3·7 and 0E z2 E 5·0 (all four quadrants of this truncated
region are used for the WRM application of reference [23]).

Figure 1(a) shows the comparison of the predicted extreme-value exceedance
probabilities, over a stationary response duration of T=100 s (corresponding to 25 cycles
of undamped free vibration, where the number of cycles=veq T/2p). The response has
been normalized by division with the displacement standard deviation. Figures 1(b) and
1(c) show similar comparisons for T=1000 s (250 cycles) and 10 000 s (2500 cycles)
respectively. The probability scale below 10−4 has been deliberately truncated on all three
figures, whereas the displacement scale extends to 3·8 standard deviations. From these
figures the FEM is seen to predict accurately down to 10−4 for all three durations. Over
the same probability range, only the WRM of Soize [22] compares equally well—the other
two WRM approaches [21] and [23] are clearly not efficient, since, to achieve the same level
of accuracy, many more terms would be needed, which is undesirable from a precision
viewpoint as mentioned earlier and for reasons of computational cost in constructing the
coefficient matrices. (Note: in Kunert’s method [23] a full, rather than a pseudo-sparse,
coefficient matrix has been used; therefore with 31 terms no increase in accuracy could be
expected if sparsity were used; moreover, as shown in Table 3, efficiency gains using
sparsity would only be achieved when relatively large size coefficients are neglected.)

Beyond the displacement range for which FEM predictions are shown, i.e., below 10−4,
both the FEM and WRM exhibit the oscillation phenomenon observed when
Gram–Charlier series are used in the method of moment closure, and elsewhere [27]. Since
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Figure 1. Extreme exceedance probabilities for the simple Duffing model via weighted residual, finite element,
and exact FPK solutions: (a) T=100 s (25 cycles); (b) T=1000 s (250 cycles); (c) T=10 000 s (2500 cycles).
——, ‘‘Exact’’; ×, Bhandari and Sherrer; q, Soize; r, Kunert; W, Langley, 31×31=961 nodes.

this phenomenon gives negative probability predictions it is obviously impossible to show
fully this effect on a logarithmic scale. Predictions by using the FEM remain accurate down
to 10−4 but then suddenly plunge to negative values becoming positive only at relatively
large displacement. By contrast predictions for all three WRM techniques show
oscillations in a much more obvious way giving false (positive) probabilities between three
and four standard deviations as shown in Figures 1(a)–1(c). The potential for
misinterpreting predictions in this region is therefore much higher with the WRM than
the FEM.

From an efficiency viewpoint, the computational efforts needed for marginal probability
density prediction by using the FEM and the WRM [21] have been compared in reference
[25] showing that the FEM is much faster for oscillators with reasonably strong
non-linearity. In making the same comparison for extreme-value prediction, one focuses
on two aspects of the computational requirements, namely (i) space requirements and (ii)
computation times involved in constructing the coefficient matrix and subsequently in
solving the system of linear equations. Owing to the computational time needed to
construct the coefficient matrices with the WRM (shown in Table 3), only the FEM has
been extended to examine the benefits of using sparse technology. The space requirement
(using NAG library sparse routines F04AXF/F01BRF) depends on the scaling and
structure of the coefficient matrix. If the structure is poor, then there will be considerable
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growth (fill-in) during the direct solution factorisation process. For the FEM, there is in
fact quite considerable growth during fill-in, such that if the computer coding difficulties
mentioned in section 4.3 can be overcome only a two or threefold increase in the
number of elements can be expected for each dimension of a 2D mesh above the
full storage limit. The obvious way to improve this is to use a better node numbering
scheme but this proved unnecessary, both for this problem and in the problem examined
in section 5, because an efficient method was found needing less than the space
available.

Turning now to the question of computational cost, for comparison Table 3 shows
the relative computing times involved (absolute figures are not very meaningful). For
extreme response prediction, the efficiency gain of the FEM compared with the WRM is
clearly maintained typically giving around a 40-fold overall speed advantage.

When the accuracy and computational efficiency are taken collectively into account, the
Finite element of [25] is superior to the WRM of Soize [22]—whereas the other two WRM
methods are totally unsuitable for efficient extreme-value prediction.

The Poisson assumption of independent up-crossings has so far been taken to hold in
all these predictions; therefore this now needs to be checked by using lightly damped
non-linear oscillator models, before the FEM can be regarded as an genuinely accurate
approach to extreme-value prediction.

5. A COMPARISON OF FEM BASED PREDICTIONS WITH MONTE CARLO
SIMULATIONS

The importance of the Poisson assumption will now be examined by using two
oscillators both derived from equation (1): a simple Duffing oscillator, the same as
previously used, and second, a more representative non-linear random vibration model
which has been shown experimentally to model adequately large amplitude single
co-ordinate responses of a clamped–clamped beam [40]—this model has wholly non-linear
damping. The choice of damping parameter, used in the simple model, is however made
so that for the response amplitudes of interest, the damping levels of the two systems are
statistically equivalent. The parameters chosen in this model are not arbitrary since they
have been obtained by using parameter estimation techniques applied to real data obtained
from an experimental test rig incorporating a clamped–clamped steel beam of 1 m length
and section 25 mm by 3 mm [40]. A clamped beam element actually forms an important
structural member in its own right, used for example in bracing members in offshore
structures and narrow stretched panels in aircraft [42]. But this particular rig was developed
to examine the use of extreme-value techniques on a real structure: i.e., one which would
allow sufficient data to be generated for model verification in a controlled series of
experiments by using a sufficiently ‘‘simple’’ non-linear system in which additional effects
such as the temperature variations in reference [42] are excluded. Satisfying all of these
requirements simultaneously can often prove very difficult. The test beam was forced to
vibrate randomly in air by using a white noise driven shaker positioned at one end of the
beam with various measurements of excitation force and displacement appropriately taken
to enable parameter assignment via parameter estimation methods [40]. The particular
damping model has been constructed by using a combination of models proposed for
vibrating beams which include the combined effect of fluid–structure interaction, structural
radiation effects and material damping [40]. Predictions will shortly be shown of extreme
exceedances obtained by using the FEM on these two models compared with those given
by Monte Carlo simulations. The conventional time-domain simulation method used here
is first described briefly.
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5.1.     

Monte Carlo simulations offer the most flexible way of examining strongly non-linear
stochastic dynamic behaviour except for extreme-value analysis at realistic probability
levels, where the method is usually computationally prohibitive [16]. Conventional
time-domain simulation involves three stages: (1) a pre-processing stage, where a
representative number of excitation sample paths with statistical properties appropriate to
the model of equation (1) are constructed; (2) an numerical integration stage (here a
standard fourth order Runge–Kutta scheme is used); and (3), a post-processing stage,
which involves two activities, the first involving transient removal from a number of output
sample paths, each of length T, and the second in which global maxima for each section
are identified for use in estimation of the extreme exceedance probability. In stage (2), a
truncated Whitaker filter [43] is used to allow convergence of the numerical integration,
because white noise samples of the excitation process are assembled at discrete time
intervals of duration Dt, giving a uniformly increasing Nyquist bandwidth fn =1/2Dt as
Dt:0. This has the effect of creating noisier excitation samples as Dt:0. By fixing Dt,
however, use of the Whitaker filter allows interpolation to smaller time steps Dt, thus
generating rapid reduction of the truncation error. Accurate Monte Carlo simulation of
the extreme-values requires Dt to be suitably chosen to give a Nyquist bandwidth many
times the characteristic bandwidth of the system, with Dt selected somewhat smaller to
meet the numerical convergence requirements. The importance of selecting the correct
value for Dt will be demonstrated shortly. The parameter values used in the simple Duffing
model are as follows: j=0·0138, a1 =0·0, a2 =0·0, vn =144·34, k3 =3021, A=200;
correspondingly for the beam model the values are j=0·0, a1 =0·812, a2 =0·015,
vn =144·34, k3 =3021, A=200. Application of statistical linearization to the beam model
gives jeq =0·0138, identical in damping level to the simple model. Simulations reveal
respective bandwidth parameter values o=0·96 for the Duffing model, and o=0·97 for
the beam model. The bandwidth parameter estimate shown here for the simulated data
was obtained by using an estimate based on the ratio o=(number of zero
upcrossings/number of local maxima). For long run simulations of an ergodic process this
approaches the estimate o= s2

ż /sz sz̈ . Since the bandwidth of the simulated excitation data
(in filtered form) is not infinite, estimates of o are indeed meaningful. This is in contrast
to theoretical Markov trajectories as obtained from the FPK equation, where this
definition of bandwidth will always be zero regardless of the damping level. Figure 2 shows
power spectral estimates obtained from simulated samples of the excitation and response
processes for both oscillator models, clearly demonstrating that responses are very
narrow-band. These spectra have been conveniently scaled to allow comparison with the
excitation in the frequency domain, where it can be seen that there is no noticeable effect
of the use of different damping models. The implications of this insensitivity on frequency
domain estimation of nonlinear oscillator damping parameters has been discussed fully in
reference [44].

Figure 3(a) shows the comparison of extreme-value exceedance probabilities for the
simple Duffing model obtained via Monte Carlo simulation and 961 node FEM–FPK
predictions corresponding to a duration of T=1 second (nominally ‘‘exact’’ solutions are
also shown). Symmetry allows a quarter region to be used for generating the FEM
solution: i.e., from 0 to 5 standard deviations. Different simulation results are shown for
three respective time steps Dt=0·004, 0·002, and 0·001 s, used in the Whitaker filter, where
the large time step is fixed at Dt=0·004 (interpolation therefore being used in two cases).
Figures 3(b) and 3(c) show similar comparisons for T=10 and 100 s, respectively. These
FEM predictions have been obtained after initially studying convergence by using an
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increasing number of nodes. This information is not shown since one can also compare
with the ‘‘exact’’ solution—showing there is no doubt about the adequacy of 961 node
predictions. By contrast for the beam model (for which nominally ‘‘exact’’ predictions are
not possible) Figure 4 (for each duration) shows convergence of the FEM predictions as
the number of nodes is increased from 441 through to 2601 nodes. Figures 5(a)–(c) show
a corresponding set of results for the beam model for each duration separately in which
simulations are included with both 961 and 2601 node FEM predictions. These show that
for practical purposes, 961 node FEM predictions are also adequate for the beam model.
To achieve low statistical variability in the Monte Carlo simulations a large number of
extreme values are needed for highly confident probability estimates. The size of the sample
size needed can be estimated in advance because the statistical variability in an extreme
exceedance estimate p̂ can be predicted by using the ratio sp̂ /p̂=1/zNp, where sp̂ is the
standard deviation in p̂ and N is the sample size. Clearly, for low probabilities, a large
value of N is needed which is very computionally demanding for large durations. Here a
value N=1000 extreme-values was used for each duration, giving reasonably confident
estimates of p above 10−2. Below this probability level, less confidence can be attached to
the simulation results. The simulation time needed here (using a Solbourne S4000) varied
from 1 CPU h for T=1; to 8 CPU h for T=100. By contrast the 961 node FEM
predictions are again extremely fast (see Table 3 for the Duffing model times) needing only
27 CPU s total—giving a speed advantage over simulation of between 100 and 1000 times,
depending on the duration. The 2601 node FEM predictions are somewhat slower needing
255 CPU s, but still giving between 15 and 100 fold speed advantage.

5.2.   

Two important results are revealed in Figures 3(a)–(c), corresponding to the simple
Duffing model. First, on the question of convergence of the numerical integration scheme
when using the Whitaker filter, it is clear that the best choice of interpolation time step
has been identified, namely Dt=0·001. In fact, any small reduction in the large time step
from Dt=0·004 only produces less efficient simulations, without any increase in accuracy.
Conclusions hereafter will therefore be based on the converged simulation results: i.e.,

Figure 2. Excitation and response spectra via Monte Carlo simulation. ——, Excitation; ——, simple Duffing
oscillator (linear damping) (scaled by factor of 8); –· ·–· ·–, beam model with non-linear damping (scaled by factor
of 8).
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Figure 3. Extreme exceedance probabilities for the simple Duffing model via finite element FPK solutions and
Monte Carlo simulation: (a) T=1 s (27·5 cycles); (b) T=10 s (275 cycles); (c) T=100 s (2750 cycles). ——,
‘‘Exact’’; –· · ·–· · · , simulated response (Dt=0·004 s); –·–·–· , simulated response (Dt=0·002 s); -------, simulated
response (Dt=0·001 s); W, finite element (Langley), 31×31=961 nodes.

Dt=0·001. The second important result concerns the Poisson assumption, since
Figures 5(a)–(c) clearly demonstrate that, for a short duration T=1 s (27·5 cycles) in the
case of the simple Duffing model with linear damping of 1%, threshold up-crossings are
clearly not independent for probability levels above 10−3. By contrast predictions for
T=100 (2750 cycles) show very good agreement between simulations, demonstrating that
the FEM–FPK approach is acceptable below 10−1.

For the non-linearly damped beam model, the level of agreement in the FEM predictions
shown in Figures 5(a)–(c) clearly demonstrates that the Poisson assumption seems to hold
for all three durations (i.e., T=1, 10, 100 s) below a probability level of 10−1. Again the
use of the Whitaker filter for all the results would suggest an appropriate interpolation
step has been used. (Note that the simulation result for Figure 5(b), i.e., T=10 s, at the
pre-converged value Dt=0·002, shows the kind of statistical variability which can
occasionally occur in direct estimates of the extreme exceedance probability when using
conventional Monte Carlo simulation—this is why use of theoretical methods such as those
based on the FPK equation are attractive.) Overall these results show that for a realistic
non-linearly damped oscillator model, with a damping level of 1% or greater, accurate
extreme exceedance prediction can indeed be made via the stationary FPK equation
without need to account for bandwidth.
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It was mentioned in the Introduction (and section 2) that the ‘‘limiting decay rate of
the first-passage probability’’ has been used as a criterion for determining the barrier height
above which first-passage intervals can been assumed to be independent [2–7]. The main
reason why the Poisson assumption does not hold, below certain levels, is usually given
as being due to the effect of clustering (or ‘‘clumping’’; e.g., see references [1], [4] or [6]).
Clustering therefore occurs only at high levels for which the Poisson assumption still does
not hold. Conversely, for example, stationary normal sequences do not exhibit clustering
at the high levels required for the Poisson assumption to hold, regardless of the level of
correlation [45]. Since it is reported that measured first-passage times for narrow band
processes are considerably longer than predicted when assuming independent first-passage
intervals, it is of interest to establish whether the limiting decay rate criterion can be of
use in stationary extreme-value prediction. To answer this question Figures 3(a)–(c) and
Figures 5(a)–(c) are used to identify the (normalized) levels above which stationary
extreme-values are independent. These are positioned between 3·9 and 4·2 for the simple
Duffing model, and between 2·9 and 3·2 for the beam model, and for convenience these
regions are labelled w1 and w2 respectively. Figure 6 shows the first-passage (limiting decay
rate/crossing rate) ratio a/y for a Duffing model [4], which is actually taken from Figure 9
of reference [4] corresponding to a ‘‘B’’ type barrier, on which the present regions w1 and
w2 are superposed. The parameter o2 taken from reference [4] and again used in Figure 6
corresponds to non-linearity in stiffness, and the parameter mz gives the linear damping
level (where m is very close to 1). The non-linear stiffness value for both our Duffing and
beam models translates here into the value o2 =0·14 and the damping level (or
corresponding equivalent damping) as given in section 5.1 is just over 1%. The Duffing
model here therefore falls tightly within the lower set of curves in Figure 6 (the upper set
corresponds to around 8% damping). Region w2 for the beam model, with non-linear
damping can be justifiably shown on the same figure since the overall damping level is
important here [4]. Now, when the ratio a/y=1, the criterion gives the appropriate first-

Figure 4. Extreme exceedance probabilities for the beam model, showing converging finite element FPK
solutions obtained by using an increasing number of elements for different durations: T=1 s (27·5 cycles);
T=10 s (275 cycles); T=100 s (2750 cycles). ------------, 21×21=441 nodes; · · · · · · · · · · , 31×31=961
nodes; ............, 41×41=1681 nodes; ———, 51×51=2601 nodes.
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Figure 5. Extreme exceedance probabilities for the beam model with non-linear damping via finite element FPK
solutions and Monte Carlo simulation: (a) T=1 s (27·5 cycles); (b) T=10 s (275 cycles); (c) T=100 s (2750
cycles). –· · – , simulated response (Dt=0·004 s); –·–·–· , simulated response (Dt=0·002 s); -------, simulated
response (Dt=0·001 s); W, FEM, 31×31=961 nodes; q, FEM, 51×51=2601 nodes.

passage barrier height above which the Poisson assumption can be assumed to hold.
Clearly for 1% damping, superposition of the stationary extreme-value results shown by
w1 and w2 demonstrates that the Poisson assumption actually holds at very much lower
levels. Since the accuracy of the linear part of this decay rate information has been
confirmed by Langley [7], and since the accuracy of the simulations used to confirm the
decay rate criterion by Crandall [2] has already been improved by Roberts [3], and since
the present simulation method has been confirmed elsewhere, there is little reason to doubt
the quality of the information shown on Figure 6. The only remaining reason for this
difference is that, for light damping, the transient part of the limiting decay rate becomes
insignificant only when the barrier height is large (and therefore when the mean first-
passage interval T� is large, thereby rendering the transient time a relatively small fraction
of the total first passage time). Consequently for a/y to be of practical value for lightly
damped stationary processes, the transient part of the limiting decay rate needs to be
removed. However the difficulty here is that the transient part is theoretically infinite and
so the practical amount to be removed is rather arbitrary. This suggests that the limiting
decay rate of the first-passage probability is in fact grossly overconservative for stationary
extreme-value prediction.
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Figure 6. Variation in the normalized limiting decay rate of the first-passage probability for a Duffing-type
model with a ‘‘B’’ type barrier (from reference [4]) showing regions w1 and w2 superposed, corresponding to
regions of the stationary extreme exceedance thresholds above which the Poisson assumption holds. Region w1 :
Duffing model with 1.38% critical damping; region w2 : non-linearly damped beam model with 1·38% equivalent
linear damping.

A further point of note derived from the extreme-value predictions in Figures 3 and 5
as shown on Figure 6, is that dependence existing at certain levels for the Duffing model
seems to have been eliminated at corresponding levels for the non-linearly damped
model—as indicated by the difference between region w1 and w2 . Therefore by implication
one demonstrates that, for stationary extreme-values, non-linearity in damping (in
addition to the degree of damping in the system [4]), provides a mechanism for relieving
the effect of clumping in the peaks of a highly correlated process. The effect of non-linearity
in damping can therefore be interpreted qualitatively as a form of strong ‘‘mixing’’
[45], which has the effect of lowering the threshold for which the Poisson assumption
holds.

Finally, the authors mention in passing that Langley’s finite element method [25] has
been extended in reference [40] to response prediction for a coupled system of non-linear
stochastic oscillators previously studied in reference [21]. But whilst predictions of
reasonably accurate low order response moments are possible by using this method, it is
apparent for generation of marginally accurate extreme response statistics that substantial
computer memory is needed (possibly around 104 Mbytes). Although this sort of working
space is not currently available to users, eventually it may become routine, opening up the
possibility of using the FPK equation as an alternative to simulation for extreme-value
analysis of MDOF systems.



. .   . 722

6. CONCLUDING REMARKS

The accuracy of two different functional-type numerical methods for solving the FPK
equation has been demonstrated for the purpose of predicting extreme exceedance
probabilities associated with white noise driven non-linear oscillators. These methods were
initially tested to find out which converges first, and therefore, which is most efficient. The
importance of the effect of bandwidth on wholly FPK based extreme-value predictions,
via the FEM, has been tested by comparison with Monte Carlo simulations. This was
designed to expose any departure from the Poisson assumption of independent
up-crossings on stationary response sample paths, at threshold levels and durations of
practical interest. Two non-linear oscillator models were examined both around the same
1% overall damping level: one with wholly linear damping; the other with wholly
non-linear damping.

The study demonstrates that highly efficient finite element (FEM) based extreme-value
predictions are substantially more accurate than the Weighted Residual method (WRM).
Moreover, in exploiting FEM based extreme-value predictions, for two different oscillator
models, comparison with conventional Monte Carlo simulations shows that, for the
particular oscillators studied, bandwidth is important only for the linearly damped model
over short durations. For the model with wholly non-linear damping, bandwidth is found
not to be important for any durations and probability levels considered. It is also
demonstrated that the limiting decay rate of the first-passage probability, which is useful
as a criterion for establishing the first-passage barrier height above which the Poisson
assumption holds, proves grossly overconservative as a corresponding criterion for use in
stationary extreme-value prediction. Finally, since the non-linear damping model used here
is appropriate for random vibration of a clamped-clamped beam, the conclusion of the
study is that, if equation (1) holds with the particular parameter set chosen, extreme
exceedance probabilities of practical interest can be obtained accurately by using a
prediction method based wholly on the stationary Fokker–Planck equation.
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